Search results for "Electronic circuits"
showing 9 items of 9 documents
A laser-based system for a fast and accurate measurement of gain and linearity of photomultipliers
2018
This paper describes a method for the measurement of gain and linearity of photomultipliers (PMTs). Gain and linearity are two fundamental parameters to use properly a PMT in several physics experiments. In the developed system light is laser generated and adressed to the PMT through a set of optical fibers. The data acquisition system consists in a commercial 16 channel digitizer coupled to a custom front-end board. With the chosen digitizer the system is scalable to test up to 16 PMTs, with the aid of a light distribution system and a multi-channel version of the front-end board. Data analysis is performed by a custom acquisition software. A 1.5» Hamamatsu PMT is used to validate the syst…
Concepts of antiferromagnetic spintronics
2017
Antiferromagnetic spintronics is an emerging research field whose focus is on the electrical and optical control of the antiferromagnetic order parameter and its utility in information technology devices. An example of recently discovered new concepts is the N\'{e}el spin-orbit torque which allows for the antiferromagnetic order parameter to be controlled by an electrical current in common microelectronic circuits. In this review we discuss the utility of antiferromagnets as active and supporting materials for spintronics, the interplay of antiferromagnetic spintronics with other modern research fields in condensed matter physics, and its utility in future "More than Moore" information tech…
Robust control of continuous-time systems with state-dependent uncertainties and its application to electronic circuits
2014
In this paper, the problems of robust stability and stabilization are investigated for a class of continuous-time uncertain systems. The uncertainties in the model are state-dependent and belong to a polytopic convex set, as can be found in many electronic circuits and some other applications. The global asymptotic stability conditions for such systems are first established by the classic common quadratic Lyapunov function approach. To reduce conservativeness, a particular class of nonquadratic parameter-dependent Lyapunov functions is introduced, by which improved robust stability conditions for the underlying systems are also derived. Based on the stability criteria, a static output feedb…
Resonance phenomena in a nonlinear neuronal circuit
2015
International audience; We characterizes a nonlinear circuit driven by a bichromatic excitation,that is the sum of two sinusoidal waves with different frequencies f1 and f2 suchthat f2 > f1. Our experiments are confirmed by a numerical analysis of the systemresponse obtained by solving numerically the differential equations which rule thecircuit voltages. Especially, we highlight that the response of the system at the lowfrequency can be optimized by the amplitude of the high frequency. By revisiting thiswell known vibrational resonance effect in the whole amplitude frequency parametricplane, we show experimentally and numerically that a much better resonance can beachieved when the two fre…
The AD and ELENA orbit, trajectory and intensity measurement systems
2017
This paper describes the new Antiproton Decelerator (AD) orbit measurement system and the Extra Low ENergy Antiproton ring (ELENA) orbit, trajectory and intensity measurement system. The AD machine at European Organization for Nuclear Research (CERN) is presently being used to decelerate antiprotons from 3.57 GeV/c to 100 MeV/c for matter vs anti-matter comparative studies. The ELENA machine, presently under commissioning, has been designed to provide an extra deceleration stage down to 13.7 MeV/c. The AD orbit system is based on 32 horizontal and 27 vertical electrostatic Beam Position Monitor (BPM) fitted with existing low noise front-end amplifiers while the ELENA system consists of 24 \…
Synchronization of hidden chaotic attractors on the example of radiophysical oscillators
2017
In the present paper we consider the problem of synchronization of hidden and self-excited attractors in the context of application to a system of secure communication. The system of two coupled Chua models was studied. Complete synchronization was observed as for self-excited, as hidden attractors. Beside it for hidden attractors some special type of dynamic was revealed.
Hardware and firmware developments for the upgrade of the ATLAS Level-1 Central Trigger Processor
2014
The Central Trigger Processor (CTP) is the final stage of the ATLAS first level trigger system which reduces the collision rate of 40 MHz to a Level-1 event rate of 100 kHz. An upgrade of the CTP is currently underway to significantly increase the number of trigger inputs and trigger combinations, allowing additional flexibility for the trigger menu. We present the hardware and FPGA firmware of the newly designed core module (CTPCORE+) module of the CTP, as well as results from a system used for early firmware and software prototyping based on commercial FPGA evaluation boards. First test result from the CTPCORE+ module will also be shown.
Mixed signal system design (A project based course)
2014
This paper describes an undergraduate 10 ECTS course in the design of analog and digital microelectronic circuits based on a project. This is offered for the students of Electronics engineering in their 3 rd semester of the 6-semester bachelor-programme. The emphasis is given on the mixed signal aspects of the system design. From the project, students get practical experience in the mixed signal system design.
Upgrade of the ATLAS Central Trigger for LHC Run-2
2015
The increased energy and luminosity of the LHC in the run-2 data taking period requires a more selective trigger menu in order to satisfy the physics goals of ATLAS. Therefore the electronics of the central trigger system is upgraded to allow for a larger variety and more sophisticated trigger criteria. In addition, the software controlling the central trigger processor (CTP) has been redesigned to allow the CTP to accommodate three freely configurable and separately operating sets of sub detectors, each independently using the almost full functionality of the trigger hardware. This new approach and its operational advantages are discussed as well as the hardware upgrades.